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ABSTRACT
In this paper a new method for pitch estimation
enhancement was presented. Pitch estimation methods are
widely used for extracting musical data from digital signal.
A brief review of these methods is included in the paper.
However, since processed signal may contain noise and
distortions, the estimation results can be erroneous. The
proposed method was developed in order to override
disadvantages of standard pitch estimation algorithms.
The new -approach is based on both pitch estimation in
terms of signal processing and pitch prediction based on
musical knowledge modeling. First, signal is partitioned
into segments roughly analogous to consecutive notes.
Thereafter, for each segment an autocorrelation function is
calculated. Autocorrelation function values are then altered
using pitch predictor output. A music predictor based on
artificial neural networks was introduced for this task. The
description of the proposed pitch estimation enhancement
method is included and some details concerning music
prediction are discussed in the paper.

1. INTRODUCTION
Pitch estimation is one of the mostly investigated and
developed areas of signal processing [2][4]. Pitch
estimation methods are widely used for music transcription
– acquisition of musical data from digital signal and for
music instrument timbre parameterization [7]. These
methods and their music transcription performance are
briefly reviewed in the paper. However, pitch estimation
methods applied for automatic music transcription from
acoustic signal cause numerous processing errors. There are
two main types of such errors: transient errors and octave
errors [1]. Conversely, in many of such cases human
listeners can determine pitch of signal evidently.
Above remarks state the motivation for the presented work.
Revising psychophysiologic constraints [3] two main
resultant assumptions were introduced: human listeners
integrate pitch within the duration of singular note (i.e.
between transients) and they can predict pitch of
consecutive notes, so they are able to correct music
information in spite of noisy or distorted signal. These
assumptions are fundamental for the new pitch estimation

method. Signal is processed within segments roughly
equivalent to consecutive notes (pitch integration) and then
predicted for each note (pitch prediction).

2. PITCH ESTIMATION METHODS AND
THEIR PERFORMANCE
There are numerous methods of pitch estimation developed
by a number of researchers. These methods are mainly
categorized in terms of functional domain: there are time,
frequency, time-frequency and cepstrum methods [4].
Pitch estimate can be evaluated in time-domain by
identifying periodicity features within the sound wave. The
most commonly used time-domain pitch estimation methods
include: threshold-crossing analysis methods, parallel
processing method, envelope analysis, autocorrelation and
AMDF methods.
Frequency-domain pitch estimation can be evaluated by
identifying certain features within the short-term spectra of
musical signal. Block diagram of a general frequency-
domain pitch estimator is shown in Figure 1.
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Figure 1. General frequency-domain pitch estimator
diagram.

Frequency-domain pitch estimators include the following:
Schroeder’s histogram and spectral compression methods,
comb-filter method and Beauchamp’s method.
Pitch can be also estimated using some time-frequency
methods as sub-band processing based on Meddis-Hewitt
model [6] and McAulay-Quatieri method. Another, yet
popular method is estimation of pitch in cepstral domain.
All of the above pitch estimation methods were
implemented and their performance has been tested using
numerous signals. The signals were generated using
common wavetable synthesizer (Sound Blaster PCI card).
The excerpts from real recordings (oboe and violin solo)
were also used for the experiments. All files were
monophonic, sampled using 22.05 kHz sample rate and 16-
bit resolution.



Pitch estimator’s performance was evaluated using the
following measures:

∑
=

−=
N

n
ff

N
e

1
00̂

1 (1)
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giving the percentage of correctly estimated fundamental
frequencies with semitone precision.

2.1 Experiments
A set of synthesized signals was prepared for the
experiments. These include singular notes as well as music
phrase using synthesized timbres of flute, oboe, organ and
piano. Pitch estimation methods’ performance was also
verified using real music recordings. Two excerpts were
used for the experiments: an excerpt from Fantasia no. 1
from “12 Fantasies for Oboe Solo” by G. Ph. Telemann
[14] and an excerpt from Capriccio A-minor no. 24 from
”24 Capriccios for Violin” by N. Paganini [11].
Experiments were performed using the following pitch
estimation methods: autocorrelation, comb-filter, cepstral
and Meddis-Hewitt model. Performance was evaluated
using e (1) and dfpr (2) measures relatively to the generated
reference dataset – phrase definition based on music
notation, verified by an expert.
Experiments concerning the autocorrelation method
confirm that weighting and attenuation significantly
improve pitch estimation performance. The highest
performance rating (dfpr) for the weighted and attenuated
autocorrelation was around 86% whereas for standard
method – 68%. Comb-filter method was evaluated for a
variable fading factor. Performance rating was slightly
lower than for the weighted and attenuated autocorrelation
method. However, since obtained optimal fading factor was
invariable, the comb-filter method seems to be more
universal and not to require adaptation accordingly to
signal’s characteristics.
Revising cepstral pitch estimator’s performance based on
the tests with the synthesized signals an additional cepstrum
attenuator was introduced. The attenuated cepstrum is
defined as:
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where C(n) denotes the cepstrum and k is an attenuation
rate. The accuracy rating achieved for the cepstral pitch
estimator was lower than for the autocorrelation and comb-
filter methods – around 75%.
Tests for the Meddis-Hewitt model-based pitch estimator
proved it’s high accuracy and comprehensiveness. An
absolute rating was slightly lower than for autocorrelation
method (around 83%), though Meddis-Hewitt model-based

estimator does not require adaptation for individual signal’s
characteristics as in case of the other methods. It should be
noted however, that since Meddis-Hewitt model-based pitch
estimator performs complex signal analysis in sub-bands it
requires high computing effort.
For all the methods implemented pitch estimation
inaccuracies were examined. There are two main error
categories: errors caused by transient noises and distortions
occurring between notes (transient errors) and errors
originated from temporal harmonic structure inconsistencies
causing octave shifts (octave errors).
As noted in the Introduction two main psychoacoustic
merits for the pitch estimation: pitch integration through
time and pitch prediction were employed to reduce pitch
estimation errors. The details concerning introduced pitch
estimation support method are presented in the further
sections of this paper.

3. PITCH INTEGRATION
Based on the evaluation of several pitch estimation
algorithms presented above a new method incorporating
pitch integration through time was elaborated. The
autocorrelation method was selected as a fundamental
processing routine for pitch estimation.

3.1 Signal Segmentation
The aim of the signal segmentation method is to divide a
monophonic music signal into segments roughly
corresponding to individual notes within an excerpt.
Conventional methods perform segmentation upon
amplitude envelope analysis. Such solution can be efficient
in case of signals consisting of clearly separated subsequent
notes. However in case of real music recordings including
legato articulation and significant reverberation an alternate
solution should be formulated.
It has been observed, that during transient portions of signal
maximum values of autocorrelation function can decrease
significantly. Also signal amplitude can drop off
momentarily. Amplitude variation can be analyzed in terms
of a following function:
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where M is the period of the lowest prospective
fundamental frequency period. Consequently a partition
function sg(n) was commenced as follows:
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where ρn(i) is a weighed and attenuated autocorrelation
function and w is a scaling factor (according to the initial
experiments scaling factor was set to w = 10) and h is a leap
size of the analysis. Transients location within a signal can
be estimated upon the position of minimums of the sg(n)
function.
However, in case of legato articulation and significant
reverberation signal energy as well as maximum value of
the autocorrelation function may not fade out within
transient. Therefore, the segmentation routine based on



sg(n) function may not work correctly. During steady
sections of a signal, local autocorrelation peaks do not alter
considerably. However within transients some
autocorrelation peaks fade away whereas the new ones
appear. Consequently, a second segmentation function sh(n)
was introduced:
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where lmax denotes l-th in terms of amplitude local
maximum of the autocorrelation function ρn(i).
Both segmentation functions can be concerned
complementary. Therefore, basing on initial experiments a
following comprehensive segmentation function was
established:

( ) ( ) ( )[ ]22 nqsnsns hgf += (8)

where q is a scaling factor set tentatively to q = 4.
An illustration of the segmentation function sf(n) is
presented in Figure 2.
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Figure 2. sf(n) function plot.

Accordingly, segmentation may be executed upon location
of minima within sf(n) function. It can be assumed that
transients cannot occur densely through time. Therefore
segmentation points positioned in distance less than 1000
samples from the previous ones are eliminated.
Initial experiments proved the method’s capability to
partition a musical excerpt into segments roughly
equivalent to individual subsequent notes. It has also been
observed that the introduced segmentation method may
work incorrectly in case of glissando-like pitch alterations.

3.2 Pitch Estimation within Segments
It can be assumed, that pitch may alter insignificantly within
a designated segment. Consequently, pitch can be estimated
for an entire segment. Additionally, partitioning function
sf(n) can be used as a scaling factor for the pitch estimation.
Scaling may cause reduction of a transient component effect
on the pitch estimate and consequently better pitch
estimation performance.
Autocorrelation function within a segment can be estimated
as:
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where sk is a k-th segment onset location.
Analogically to the standard autocorrelation method pitch
can be then estimated according to the formula:
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where fs is a sample rate and ( )[ ]km ρ̂  is an autocorrelation
estimate peak location. An illustration of the pitch
estimation within segments is shown in Figure 3. The
circles indicate pitch estimated incorrectly.
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Figure 3. Pitch estimation within segments.

Subsequently, pitch can be estimated precisely for each leap
within a segment. Accurate pitch estimates are determined
upon locations of local autocorrelation peaks nearest to the
global peak location of autocorrelation estimate ( )kρ̂ .
In Figure 3 incorrect pitch estimates were indicated. An
effect of erroneous estimate can also be observed in case of
accurate pitch estimation with integration consequently. In
the next sections a solution intended to increase pitch
estimation accuracy based on pitch prediction is presented.

4. PREDICTIVE SUPPORT FOR MUSIC
TRANSCRIPTION
A neural music predictor [13] was developed as a pitch
estimation supporting unit. The applied solution is based on
the Shannon’s concept of predictive data coding, employed
by Moradi and others for tests with the English text [9]. A
block diagram of neural music predictive encoder is
presented in Figure 4.
The data is collected within a buffer. The predictor guesses
the next note upon the collected data stored in a buffer.
Thereafter a prediction process is repeated until a predicted
value match actual note. In case of neural predictor
succeeding predictions are emulated by networks activation
output values.
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Figure 4. Music predictive encoder.

4.1 Representation and accumulation of data
Music data representation is essential for the prediction
performance. Three main pitch representation techniques
were examined: binary, modified Hörnel’s method and



modified Mozer’s method. All representation methods
employed represent a relation between the actual pitch and
a pitch of a preceding note. In case of binary representation
pitch relation is coded using a vector of 27 bits as shown
for an example in Tab. 1.

Table 1. An example of binary pitch relation coding.
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Original Hörnel’s method was intended for diatonic interval
coding [5]. The method was then modified to allow
chromatic interval coding. Each pitch relation is then coded
using 11 parameters as shown in Table 2.

Table 2. Modified Hörnel’s interval representation.
interval -
semitones

direction
bits

octave
bit interval size representation

-3 1 0 0 0 0 0 0 0 0.5 1 0
-2 1 0 0 0 0 0 0 0 0 1 0.5
-1 1 0 0 0 0 0 0 0 0 0.5 1
0 0 1 0 0 1 0 0 0 0 0 0.5

+1 0 0 1 0 1 0.5 0 0 0 0 0
+2 0 0 1 0 0.5 1 0 0 0 0 0
+3 0 0 1 0 0 1 0.5 0 0 0 0

Mozer’s pitch representation method characterize pitch as
an absolute value. Therefore a modification of Mozer’s
representation was introduced to allow relative
representation of interval size. A representation was also
enhanced by adding direction parameter and octave bit.
Contrary to unipolar binary and modified Hörnel’s
representation, modified Mozer’s representation is bipolar.
Intervals are coded as shown in Table 3.
Data can be accumulated using two types of a buffer: fixed-
size buffer and fading memory model [15]. In case of fixed-
size buffer (where z is a buffer size) data for z events
(notes) is accumulated using z individual representation
vectors. Fading memory model allows coding of z events
using a singular representation vector where actual and
faded preceding vector values are accumulated according to
the formula:
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Table 3. Modified Mozer’s interval representation.
interval -
semitones direction octave

bit interval size

-3 -1 0 +1 +1 +1 –1 –1 –1
-2 -1 0 +1 +1 –1 –1 –1 –1
-1 -1 0 +1 –1 –1 –1 –1 –1
0 0 0 –1 –1 –1 –1 –1 –1
+1 +1 0 –1 –1 –1 –1 –1 +1
+2 +1 0 –1 –1 –1 –1 +1 +1
+3 +1 0 –1 –1 –1 +1 +1 +1

where bn denotes buffer values for the n-th event, ek denotes
the k-th event and r – a fading factor within the range of (0,
1).

4.2 Predictor implementation
The predictor was implemented using Stuttgart Neural
Network Simulator (SNNS) [16]. Three pitch representation
methods presented above were examined in terms of
prediction efficiency. For the fixed-size buffer its size was
set to 5, 10 and 20 samples (music events). For the fading
memory model fading factor r was set accordingly to

{ }8.0;5.0;2.0=r . Expected output of the trained predictor
should correspond to a subsequent event ek+1 using a
selected representation method.
Data for the music prediction experiments were collected
from the MIDI database consisting of fugues from Das
Wohltemperierte Klavier by J. S. Bach. Neural networks
were trained using all parts without the uppermost voice.
The part left was used for predictor performance tests.
For the experiments a feed-forward neural network model
with a single hidden layer was used. Prediction efficiency
was tested using the following measures: correctness at the
first guess, average number of guesses required for correct
prediction and lower and upper FN entropy bounds given as:
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where N
iq  denotes frequency of correct answers at the i-th

guess and M is the number of possible output patterns.
According to the interval representation characteristics
subsequent guesses can be characterized as a vector
consisting of all possible output representation vectors
ordered in terms of matching measure:
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where { }Mm ,,2,1 K= , i is a representation parameter mark,
N denotes number of representation parameters, 1ˆ +ne  is a
predicted output and em is a considered possible output
pattern. Number of guesses required for prediction can then
be figured out by locating expected output pattern within a
set of ordered possible output patterns.
Based on the test results the following pitch prediction
characteristics can be deduced. The finest prediction
accuracy (correct prediction rate for the first guess more
than 0.97) was obtained for the modified Hörnel’s
representation and fixed-size buffer. For the fading memory
type buffer prediction efficiency was significantly lower,
however fading memory representation requires
considerably less computing power for training and
evaluation. Modified Mozer’s interval coding is not
efficient for music prediction.

4.3 Predictive support for pitch estimation
Evaluated music predictor was implemented to support
pitch estimation. Block diagram of the system supporting
fundamental frequency estimation within a signal segment
x(k) is presented in Figure 5.
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Figure 5. Block diagram of prediction-supported pitch
estimator.

Pitch is estimated in a following way. Signal is analysed
within segments. For each segment an autocorrelation
function is estimated and normalized. Energy weighted
autocorrelation function is given as:
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where ( )kiρ̂  is a autocorrelation function maximum within
i-th band and i is an indicator of a semitone sub-band.
At the beginning predictor data buffer is initialised with
zero values, thus for initial frames the predictor is not used
for supporting pitch estimation. However, pitch values of
consecutive notes estimated on the basis of autocorrelation
function peak location are stored within a buffer. After a
certain amount of data was accumulated within the buffer
the predictor starts calculating probable pitch values for the
forthcoming notes. A predictor output vector Pk  (see
representation methods in section 4.1) is distributed among
semitone-wide subbands, scaled using a weighting factor wp
and added to current autocorrelation function values. Pitch

( )kf 0̂  is then estimated on the basis of peak location of the
resultant function. Pitch predictor is implemented to adjust
pitch estimate ( )kf 0̂  within k-th segment.
Initial experiments indicate, that if the autocorrelation
function peaks appear at the edge of two adjacent sub-bands
pitch estimation may fail. Therefore, pitch predictor output
is distributed among the other sub-bands as follows:
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where pi(k) is the i-th output vector element.
Accordingly, pitch in a k-th segment can be estimated as
follows:
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where wp is a weighting factor. As noted before signal
segmentation module may fail in case of smooth inter-note
transients. Hence, while using fixed-size type buffer an
uncontrolled data shift within a sequence may occur. For
this reason in a predictive supported pitch estimator the
fading memory model was used. Neural predictor has been
trained using parts from “12 Fantasies for Oboe Solo” by G.
Ph. Telemann excluding the excerpt used for the
experiments.

4.4 Pitch estimation performance
Pitch estimation performance was analyzed using dfpr
measure (2). A comparison of autocorrelation-based pitch
estimator performance with and without signal partitioning
is shown in Figure 6.
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Figure 6. Pitch estimation performance with and
without partitioning.

Subsequently, pitch estimation tests for the system
incorporating neural music predictor were performed.
Experiments were performed for the neural predictors
containing one hidden layer of 50 and 100 units (indications
1x50 and 1x100 accordingly) and two hidden layers of 50
units (indication 2x50). Tests were performed for variable
fading memory coefficient { }8.0;5.0;2.0=r . Based on the
results obtained without using prediction support, linear
attenuation function a(n) coefficient was set to k = 0.8.
First the correlation between predictor output and the pitch
in terms of music context was analyzed. It has proved, that
the predictor’s output corresponds to music. However, it
has been found that the predictor can forecast a different
pitch value than the one found in the music. Such a situation
is mainly caused by a limited number of patterns within
learning sets. In other cases predictor can indicate a few
possible solutions. In such a case the choice of a
representation method is very important since in some cases
(i.e. Mozer’s method) it can be unmanageable to decode
such information.
It is also very important to avoid influence of prediction
errors on the estimate of following notes. In such a case a
predictor may be lost and start “composing” it’s own data
stream. To keep the predictor “on track” lower fading
memory model factor values can be used. The predictor has
been then connected with the pitch estimation system to
perform experiments regarding cooperation between signal
analysis and pitch prediction. Experiments were performed
using variable values of weighting factor wp and variable
values of fading memory factor.
Initially, the systems behaviour was analyzed using the
segments for which the pitch was erroreously estimated
without using the predictor. It has been found out, that the
predictor output can correspond with the musical contents.
Consequently, adding weighted predictor’s output to
autocorrelation function estimate can alter distorted peaks
relevant to the actual pitch.
Accordingly, experiments with longer music signal were
performed using an excerpt from the Fantasia for oboe solo
by G. Ph. Telemann [14]. The maximum gain of pitch
prediction accuracy by using pitch prediction was about 2

( )kf0



percent points in terms of dfpr measure (90.1% accuracy
without and 91.8% accuracy with pitch prediction support).
However, system parameters has to be carefully adjusted. In
case of improper adjustments (fading memory coefficient,
weighting factor wp etc.) the predictor tends to diminish
pitch estimation accuracy. For example, if the wp factor
value is too high, the elaborated system tends to “generate”
music coarsely related to the analyzed music excerpt.

5. CONCLUSIONS
Upon the performed experiments and the results presented
following conclusions were deduced:
• segmentation of signal using the introduced method can

significantly increase pitch estimation accuracy,
• neural prediction support for pitch estimation can

furthermore increase accuracy.
Taking into account signal characteristics (articulation,
rapid tempo, reverberation etc.) the obtained pitch
estimation accuracy (maximum dfpr value more than 91%)
should be considered as high. It should be also noted, that
the reference pitch sequence was adjusted by matching
individual note duration by auditory comparison with the
recorded excerpt used for the experiments. The reference
pattern adjustment technique might cause additional pitch
estimation errors.
The presented pitch estimation enhancement technique
incorporating segmentation and prediction can also be
implemented using another fundamental frequency
estimators such as comb-filter, cepstral or Meddis-Hewitt
model-based methods.
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